15.9. Dostęp do systemów bazodanowych - język SQL

Relacyjne SZBD są wyposażone w język zapytań SQL (Structured Query Language). Spełnia on funkcje zarówno opisu, jak i manipulacji danymi. SQL umożliwia definiowanie, wyszukiwanie i aktualizację danych w relacyjnej bazie danych [Matosek, 2005].

Język SQL jest postrzegany przede wszystkim jako język zapytań. Istotnie, jego podstawową instrukcją jest instrukcja wyszukiwania, składająca się z bloku SELECT FROM WHERE, która ma postać:

SELECT (lista atrybutów)
FROM (lista relacji)
WHERE (warunek)
Lista atrybutów określa nazwy atrybutów, których wartości są wyszukiwane, lista relacji nazwy relacji, które będą przetwarzane w wyniku zapytania, a warunek - krotki, których zapytanie dotyczy. Pełna składnia instrukcji wyszukiwania przedstawia się następująco:

SELECT (lista atrybutów)
FROM (lista relacji)
[WHERE (warunek)]
[GROUP BY (atrybuty grupowania)]
[HAVING (warunek grupowy)]
[ORDER BY (lista atrybutów)]
Pierwsze dwa zdania są obligatoryjne, a pozostałe opcjonalne.
Załóżmy następujące zapytanie (wyszukiwanie kwalifikowane). Podaj numery legitymacji studentów, będących na czwartym roku i studiujących towaroznawstwo.

W języku SQL przyjmie ono następującą postać:

SELECT NR-LEGIT

FROM STUDENT
WHERE ROK $=4$ AND KIER-STUD $=$ 'towaroznawstwo'
W wyrażeniach logicznych następujących po WHERE korzysta się z:

- operatorów porównania: $<,<=,=,>,>=$;
- operatorów logicznych: AND, OR i NOT;
- nawiasów określających kolejność obliczenia wartości wyrażenia.

Do aktualizacji bazy danych w języku SQL służą operacje wprowadzania (INSERT), skreślania (DELETE) i modyfikacji (UPDATE). Tak więc wprowadzenie kolejnej krotki do relacji STUDENT przeprowadza się przy użyciu następującej instrukcji:

INSERT INTO STUDENT

VALUES (29201, 'Kinga', 'Jankowska', 1, 17, 'towaroznawstwo')
Istnieje możliwość wprowadzania instrukcją INSERT również krotek niepełnych. Zakłada ona przyjęcie wartości zerowych dla atrybutów niewymienionych w instrukcji INSERT:

INSERT INTO WYKŁAD (NAZWA, IL-GODZ) VALUES 'programowanie', 45)

Instrukcja UPDATE pozwala zmieniać wartość atrybutów w danej krotce, np. nazwisko wykładowcy finansów:

UPDATE WYKŁAD
SET WYKŁADOWCA = ,Jabłkowski'
WHERE NAZWA = ,finanse'
Instrukcja skreślania usuwa krotki z relacji, np. krotkę o kluczu 15921 z relacji STUDENT:
DELETE FROM STUDENT
WHERE NR- LEG $=15921$
Usunięcie wszystkich wierszy z tabeli można dokonać instrukcją:

DELETE FROM OCENA

Język SQL może być językiem interaktywnym dla relacyjnej bazy danych bądź osadzonym (embedded) w języku macierzystym (host language), np. w języku Java.

15.10. Systemy Big Data

Big Data jest terminem, który został spopularyzowany dzięki wszechobecnym dużym zbiorom danych, przede wszystkim znajdujących się w internecie. Najczęściej wykorzystywana definicja dotyczy ujęcia Big Data od strony źródeł danych.

> Źródła danych typu Big Data można scharakteryzować za pomoca atrybutów określanych wspólnym kodem 3V: duży wolumen danych (Volume), duża szybkość przepływu i przetwarzania danych (Velocity) oraz duża zmienność danych (Variety) [Chen, Chiang, Storey, 2012].

Volume oznacza zbiory o bardzo dużych rozmiarach w porównaniu z tradycyjnymi bazami danych. Velocity oznacza, że występuje ciągły napływ danych uniemożliwiający ich zatrzymanie i przetwarzanie z wykorzystaniem tradycyjnych technik. Variety odnosi się do braku uporządkowania tych danych, tj. ich różnorodności i heterogeniczności. Wraz z rozwojem Big Data dodawane są kolejne atrybuty V, wśród których najpowszechniej występują: duża wartość danych (Valuę) - postrzeganie danych typu Big Data jako wartość przynoszącą znaczące korzyści dla przedsiębiorstw oraz wiarygodność danych (Veradity) - oznaczające możliwość oceny poprawności danych typu Big Data [Morton, Runciman, Gordon, 2014].

Big Data odnosi się do wyników analiz, które uzyskuje się z dużych zbiorów danych, a które nie byłyby możliwe do osiągnięcia na podstawie małych zbiorów danych. Analizy te wykonuje się w celu uzyskania nieznanego obrazu danych lub utworzenia nowej informacji w sposób umożliwający zmianę rynku, organizacji, powiązań między rządem a obywatelami i inne [Mayer--Schoenberger, Cukier, 2013]. Systemy Big Data mają zastosowanie wtedy, gdy dane są tak dużych rozmiarów, że nie mogą być przetwarzane z wykorzystaniem tradycyjnych technologii i narzędzi, takich jak relacyjne systemy zarządzania bazami danych [Maślankowski, 2015a].

Jeśli chcemy scharakteryzować systemy Big Data w kategorii jednostek danych, należy stwierdzić, że zbiory przetwarzane przez te narzędzia mają wielkość wielu petabajtów lub eksabajtów danych.

